A Structured VHDL Design Method

Jiri Gaisler

CTH / Gaisler Research

Qutline of lecture

¢ Traditional 'ad-hoc' VHDL design style
¢ Proposed structured design method

Various ways of increasing abstraction level in
synthesisable code

¢ A few design examples

Traditional design methods

¢ Many concurrent statments
¢ Many signd
¢ Few and small process statements
¢ No unified signal naming convention
¢ Coding isdone at low RTL level:
¢ Assignments with logical expressions
¢ Only simple array data structures are used

Problems

¢ Slow execution due to many signals and processes
¢ Dataflow coding difficult to understand

¢ Algorithm difficult to understand

¢ No distinction between sequential and comb. signals

¢ Difficult to identify related signals
¢ Large port declarations in entity headers

Modelling requirements

¢ We want our modelsto be:
¢ Easy to understand and maintain
¢ Simulate as fast as possible
¢ Synthesisable
¢ No simulation/synthesi s discrepancies

Abstraction of digital logic

¢ A synchronous design can be abstracted into two
separate parts;, a combinational and a sequentia

| mplementing the abstracted view in VHDL:
The two-process scheme

¢ A VHDL entity is made to contain only two processes. one
sequentia and one combinationa

¢ Two local signals are declared:
register-in (rin) and register-out (r)

¢ Thefull algorithm (q = f(d,r))is performed in the
combinational process

4 The combinational processis sensitiveto all input ports and
the register outputsr

¢ The sequential processis only sensitive to the clock

Two-process VHDL entity

- Q. -por
In-ports Out-port

d

Two-process scheme: data types

¢ Thelocal signalsr and rin are of composite type (record) and
include all registered values

¢ All outputs are grouped into one entity-specific record type,
declared in aglobal interface package

 Input ports are of output record types from other entities

¢ A local variable of theregistered typeis declared in the
combinational processes to hold newly calculated values

¢ Additional variables of any type can be declared in the
combinational process to hold temporary values

Example

use work.interface.all;

entity irqctrl is port (
clk : in std_logic;
rst : in std_logic;
sysif : in sysif_type;
irgo : out irqctrl_type);
end;

architecture rtl of irqctrl is

type reg_type is record

irq : std_logic;

pend : std_logic_vector(0 to 7);

mask : std_logic_vector(0 to 7);
end record;

signal r, rin : reg_type;

begin

comb : process (sysif, r)
variable v : reg_type;
begin
v :=r1; v.irq := '0';
for i in r.pend'range loop
v.pend := r.pend(i) or
(sysif.irq(i) and r.mask(i));
v.irq := v.irq or r.pend(i);
end loop;
rin <= v;
irqo.irq <= r.irgq;
end process;

reg : process (clk)
begin
if rising_edge(clk) then
r <= rin;
end if;
end process;

end architecture;

Hierarchical design

@ Grouping of signals makes
code readable and shows the
direction of the dataflow

use work.interface.all;

entity cpu is port (
clk : in std_logic;

rst : in std_logic;
mem_in : in mem_in_type;
mem_out : out mem_out_type);

end;
architecture rtl of cpu is
signal cache_out : cache_type;

signal proc_out : proc_type;
signal mctrl_out : mctrl_type;

begin

u0 : proc port map
(clk, rst, cache_out, proc_out);

ul : cache port map
(clk, rst, proc_out, mem_out cache_out);

u2 : mctrl port map
(clk, rst, cache_out, mem_in, mctrl_out,

mem_out);

end architecture;

Benefits

¢ Sequential coding iswell known and understood
¢ Algorithm easily extracted
¢ Uniform coding style simplifies maintenance

¢ Improved simulation and synthesis speed

¢ Development of modelsisless error-prone

Adding an port

¢ Traditional method:

€ Add port in entity port
declaration

€ Add port in sengitivity list of
appropriate processes (input
ports only)

€ Add port in component
declaration

€ Add signal declaration in parent
module(s)

€ Add port map in component
Instantiation in parent module(s)

¢ Two-process method:

¢ Add dement in the interface
record

Adding aregister

¢ Traditional method: ¢ Two-process method:
€ Add signal declaration (2 sig.) € Add definition in register record

€ Addregistered signal in process
sengitivity list (if not implicite)

@ (Declare loca variable)

€ Add driving statement in clocked
process

Tracing signalsduring debugging

¢ Traditional method: ¢ Two-process method:

@ Figure out which signals are € Addinterfacerecords, r and rin

registered, which aretheir inputs, _ _
and how they are functionally 4 Slgna_ds are grouped according to
related function and easy to understand

€ Addition/deletion of record
elements automatically

€ Repeat every time aport or propagated to trace window
register is added/del eted

€ Add signalsto tracefile

wave - default

T3
iy

om0

244363 ns

$EE LA e | @,a,cm B

FEEEF

]

=

]

16315 ns to 17120 ng

I

Stepping through code during debugging

¢ Traditional method: ¢ Two-process method:

@ Connected processes do not € Add abreakpoint in the begining
execute sequentially due to delta of the combinational process

signal delay @ Single-step through code to

@ A breakpoint in every connected execute complete algorithm

process needed # Next signal value (rin) directly

€ New signal value in concurrent visblein variable v
processes not visible

source - sdmctd.vhd

when others =» raddr := downto T

end case;

address {

-- sdram access FSM

cage r.sdstate is
when idle =>
if startsd =
.address(
.sdba
.sdesn =
.rasn 0
.sdstate :=
end if;
when actl =»
w.rasn (= 'l';
if r.omefgl. casdel = '1' then v. sdstate :
else
v.sdstate =
v. hready
end if;
when actl =»
v.sdstate
v hready
when actd =>
V. casn o
v.address(downto 2}
wv.dgn := dgm; w. hurst
if r hwrite ‘1" then
v. sdstate wrl; v sdwen *0; w. hdrive "1111;
1f ahbsi. htrans "11" or {r.hready = '0') then v hready :
else v sdstate rdl; end if;
when wrl =>
v, address(downto U} "0000" & r.ohaddrf downto U}
if ({r.burst and r. hready) '1'y and {r.htrans = "11")
v.hready := ahbsi htrans((}) and ahbsi htrans(l) and r
else
v. sdstate wr2; v bdrive
w.dgm = "1111";
end if;
when wr2 =»
w.rasn
v. sdstate
when wrd =»
v. sdesn = "11"; w.rasn

‘1" then
downto 23 = raddr;
v, address(downto
not ahbsi, hadde(

actl;

1
1) & abbsi. haddo (20)

actl;

actd;
r . hwrite and ahhsi. htrans{() and ahbsi. htrans(

actd;
r hyrite and ahbsi. htrans(l) and ahbsi.htrans{l)

c= "0000" & r.ohaddri downto

r. hready;

N 1

i

then
Chr

"oooov; wocasn := 'l'; wosdwen

‘0 w.osdwen
wrl;

i

H

'1'; end if;

eady;

"

Complete algorithm can be a sub-program

@ Allowsre-useif placedina
global package (e.g. EDAC)

€ Can be verified quickly with
local test-bench

@ Meiko FPU (20 K gates):
@ 1 entity, 2 processes
9 44 sub-programs
@ 13 sgnal assignments

€ Reverse-engineered from
verilog: 87 entities, ~800
processes, ~2500 signals

comb : process (sysif, r, rst)
variable v : reg_type;
begin

proc_irqctl(sysif, r, v);
rin <= v;

irqo.irq <= r.irgq;
end process;

Sequential code and synthesis

€ Most sequential statements
directly synthesisable by modern
tools

@ All variables have to be assigned
to avoid latches

@ Order of code matters!

€ Avoid recursion, division, access
types, text/file 1 O.

comb : process (sysif, r, rst)
variable v : reg_type;
begin

proc_irqctl(sysif, r, v);

if rst = '1' then

v.irq := '0';

v.pend := (others => '0');
end if;

rin <= v;
irqo.irq <= r.irgq;
end process;

Comparison MEC/LEON

€ ERC32 memory contoller MEC

€ Ad-hoc method (15 designers)
€ 25,000 lines of code

@ 45 entities, 800 processes

€ 2000 sgnals

€ 3000 signal assigments

€ 30 Kgates, 10 man-years,
numerous of bugs, 3 iterations

€ LEON SPARC-V8 processor
€ Two-process method (mostly)
@ 15,000 lines of code

@ 37 entities, 75 processes

€ 300 signals

800 signal assigments

€ 100 Kgates, 2 man-years, no
bugsin first silicon

|ncreasing the abstraction level

@ Benefits ¢ Problems

@ Easier to understand the @ Keep the code synthesisable

underlying algorithm # Synthesis tool might choose

@ Easier to modify/maintain wrong gate-level structure

@ Faster ssimulation @ Problems to understand
algorithm for less skilled

@ Use built-in module engineers

generators (synthesis)

Using records

@ Useful to group related signals

@ Nested records further improves
readability

@ Directly synthesisable

€ Element name might be difficult
to find in synthesised netlist

type regl_type is record
f1 : std_logic_vector(0
f2 : std_logic_vector(0
f3 : std_logic_vector(0
end record;

type reg2_type is record
x1 : std_logic_vector(0
x2 : std_logic_vector(0
x3 : std_logic_vector(0
end record;

type reg_type is record
regl : regl_type;
reg?2 : reg2_type;

end record;

variable v : regtype;

v.regl.f3 := “0011001100”;

Using ieee.std logic arith.all;

i type unsigned is array (natural range
@ Written by Synopsys, now freely A ety

available type signed is array (natural range
L <>) of st_logic;
@ Declaresto additional types:
signed and unsigned

variable ul, u2, u3 : unsigned;
variable vl : std_logic_vector;

@ Declares arithmetic and various
conversion operators. +, -, *, /, <, -) v 3.
>, =, <=, >=, [=, conv_integer ul :=ul o+ (u2 # us);

. L . if (vl >= v2) then ...

@ Built-in, optimised versions
availablein all simulators and v1(0) := ul(conv_integer(u2));

synthesistools
€ |EEE aternative: numeric_std

Use of loops

‘ Used for iterative calcul ations variable vl : std_logic_vector(0 to 7);

variable first_bit : natural;
¢ Index variable implicitly _ find first bit set

declared for i in vl1'range loop
if v1i(i) = '1' then
@ Typica use: iterative agorithms, first_bit :=i; exit;

end if;

priority encoding, sub-bus end loop:
extraction, busturning

-- reverse bus

for in 0 to 7 loop
vli(i) := v2(7-1);

end loop;

Multiplexing using integer conversion

@ N to 1 multiplexing

€ N to 2**N decoding

function genmux(s, v : std_logic_vector)
return std_logic is

variable res : std_logic_vector(v'length-1
downto 0);

variable i : integer;

begin
res := v; -- needed to get correct index
i := conv_integer(unsigned(s));
return(res(i));

end;

function decode(v : std_logic_vector) return
std_logic_vector is
variable res :
std_logic_vector((2**v'length)-1 downto 0);
variable i : natural;
begin
res := (others => '0");
i := conv_integer(unsigned(v));
res(i) := '1"';
return(res);
end;

State machines

€ Simple case-statement
implementation

€ Maintains current state

4 Both combinational and
registered output possible

architecture rtl of mymodule is
type state_type is (first, second, last);
type reg_type is record
state : state_type;
drive : std_logic;
end record;
signal r, rin :
begin
comb : process(...., r)
begin
case r.state is
when first =>
if cond0 then v.state :
when second =>
if condl then v.state := first;
elsif cond2 then v.state := last; end if;
when others =>
v.drive := '1l'; v.state := first;
end case;
if reset = 'l' then v.state := first; end if;
modout.cdrive <= v.drive; -- combinational
modout.rdrive <= r.drive; -- registered
end process;

reg_type;

second; end if;

Conclusions

¢ The two-process design method provides auniform
structure, and a natural division between algorithm
and state

¢ It improves
¢ Development time (coding, debug)

¢ Simulation and synthesis speed
¢ Readability
¢ Maintenance and re-use

