
A Structured VHDL Design Method

Jiri Gaisler

CTH / Gaisler Research

Outline of lecture

�Traditional 'ad-hoc' VHDL design style

� Proposed structured design method

�Various ways of increasing abstraction level in
synthesisable code

�A few design examples

Traditional design methods

�Many concurrent statments

�Many signal

� Few and small process statements

�No unified signal naming convention

�Coding is done at low RTL level:

�Assignments with logical expressions

�Only simple array data structures are used

Problems

� Slow execution due to many signals and processes

�Dataflow coding difficult to understand

�Algorithm difficult to understand

�No distinction between sequential and comb. signals

�Difficult to identify related signals

�Large port declarations in entity headers

Modelling requirements

�We want our models to be:

�Easy to understand and maintain

�Simulate as fast as possible

�Synthesisable

�No simulation/synthesis discrepancies

Abstraction of digital logic

�A synchronous design can be abstracted into two
separate parts; a combinational and a sequential

Comb
q = f(d,q

r
)

DFF

q

Clk

d

q
r

Implementing the abstracted view in VHDL:
The two-process scheme

�A VHDL entity is made to contain only two processes: one
sequential and one combinational

�Two local signals are declared:

register-in (r i n) and register-out (r)

�The full algorithm (q = f(d,r))is performed in the
combinational process

�The combinational process is sensitive to all input ports and
the register outputs r

�The sequential process is only sensitive to the clock

Two-process VHDL entity

Comb.
Process

q
cn

= f(d,r) Seq.
Process

Out-port
In-ports

r

r i n

Clk

q
c

d

Two-process scheme: data types

�The local signals r and r i n are of composite type (record) and
include all registered values

�All outputs are grouped into one entity-specific record type,
declared in a global interface package

� Input ports are of output record types from other entities

�A local variable of the registered type is declared in the
combinational processes to hold newly calculated values

�Additional variables of any type can be declared in the
combinational process to hold temporary values

Example
use work.interface.all;

entity irqctrl is port (
 clk : in std_logic;
 rst : in std_logic;
 sysif : in sysif_type;
 irqo : out irqctrl_type);
end;

architecture rtl of irqctrl is

 type reg_type is record
 irq : std_logic;
 pend : std_logic_vector(0 to 7);
 mask : std_logic_vector(0 to 7);
 end record;

 signal r, rin : reg_type;

begin

 comb : process (sysif, r)
 variable v : reg_type;
 begin
 v := r; v.irq := '0';
 for i in r.pend'range loop
 v.pend := r.pend(i) or
 (sysif.irq(i) and r.mask(i));
 v.irq := v.irq or r.pend(i);
 end loop;
 rin <= v;
 irqo.irq <= r.irq;
 end process;

 reg : process (clk)
 begin
 if rising_edge(clk) then
 r <= rin;
 end if;
 end process;

end architecture;

Hierarchical design

�Grouping of signals makes
code readable and shows the
direction of the dataflow

use work.interface.all;

entity cpu is port (
 clk : in std_logic;
 rst : in std_logic;
 mem_in : in mem_in_type;
 mem_out : out mem_out_type);
end;

architecture rtl of cpu is
 signal cache_out : cache_type;
 signal proc_out : proc_type;
 signal mctrl_out : mctrl_type;
begin

 u0 : proc port map
 (clk, rst, cache_out, proc_out);

 u1 : cache port map
 (clk, rst, proc_out, mem_out cache_out);

 u2 : mctrl port map
 (clk, rst, cache_out, mem_in, mctrl_out,
 mem_out);

end architecture;

Proc

Cache

Mctrl

Memory

Clk, rst

Benefits

� Sequential coding is well known and understood

�Algorithm easily extracted

�Uniform coding style simplifies maintenance

� Improved simulation and synthesis speed

�Development of models is less error-prone

Adding an port

�Traditional method:

�Add port in entity port
declaration

�Add port in sensitivity list of
appropriate processes (input
ports only)

�Add port in component
declaration

�Add signal declaration in parent
module(s)

�Add port map in component
instantiation in parent module(s)

�Two-process method:

�Add element in the interface
record

Adding a register

�Traditional method:

�Add signal declaration (2 sig.)

�Add registered signal in process
sensitivity list (if not implicite)

� (Declare local variable)

�Add driving statement in clocked
process

�Two-process method:

�Add definition in register record

Tracing signals during debugging

�Traditional method:

� Figure out which signals are
registered, which are their inputs,
and how they are functionally
related

�Add signals to trace file

� Repeat every time a port or
register is added/deleted

�Two-process method:

�Add interface records, r and r i n

� Signals are grouped according to
function and easy to understand

�Addition/deletion of record
elements automatically
propagated to trace window

Stepping through code during debugging

�Traditional method:

� Connected processes do not
execute sequentially due to delta
signal delay

�A breakpoint in every connected
process needed

�New signal value in concurrent
processes not visible

�Two-process method:

�Add a breakpoint in the begining
of the combinational process

� Single-step through code to
execute complete algorithm

�Next signal value (r i n) directly
visible in variable v

Complete algorithm can be a sub-program

�Allows re-use if placed in a
global package (e.g. EDAC)

� Can be verified quickly with
local test-bench

�Meiko FPU (20 Kgates):

�1 entity, 2 processes

�44 sub-programs

�13 signal assignments

�Reverse-engineered from
verilog: 87 entities, ~800
processes, ~2500 signals

 comb : process (sysif, r, rst)
 variable v : reg_type;
 begin

 proc_irqctl(sysif, r, v);

 rin <= v;
 irqo.irq <= r.irq;
 end process;

Sequential code and synthesis

�Most sequential statements
directly synthesisable by modern
tools

�All variables have to be assigned
to avoid latches

�Order of code matters!

�Avoid recursion, division, access
types, text/file IO.

 comb : process (sysif, r, rst)
 variable v : reg_type;
 begin

 proc_irqctl(sysif, r, v);

 if rst = '1' then
 v.irq := '0';
 v.pend := (others => '0');
 end if;

 rin <= v;
 irqo.irq <= r.irq;
 end process;

Comparison MEC/LEON

� ERC32 memory contoller MEC

�Ad-hoc method (15 designers)

� 25,000 lines of code

� 45 entities, 800 processes

� 2000 signals

� 3000 signal assigments

� 30 Kgates, 10 man-years,
numerous of bugs, 3 iterations

� LEON SPARC-V8 processor

� Two-process method (mostly)

� 15,000 lines of code

� 37 entities, 75 processes

� 300 signals

� 800 signal assigments

� 100 Kgates, 2 man-years, no
bugs in first silicon

Increasing the abstraction level

�Benefits

�Easier to understand the
underlying algorithm

�Easier to modify/maintain

�Faster simulation

�Use built-in module
generators (synthesis)

� Problems

�Keep the code synthesisable

�Synthesis tool might choose
wrong gate-level structure

�Problems to understand
algorithm for less skilled
engineers

Using records

�Useful to group related signals

�Nested records further improves
readability

�Directly synthesisable

� Element name might be difficult
to find in synthesised netlist

type reg1_type is record
 f1 : std_logic_vector(0 to 7);
 f2 : std_logic_vector(0 to 7);
 f3 : std_logic_vector(0 to 7);
end record;

type reg2_type is record
 x1 : std_logic_vector(0 to 3);
 x2 : std_logic_vector(0 to 3);
 x3 : std_logic_vector(0 to 3);
end record;

type reg_type is record
 reg1 : reg1_type;
 reg2 : reg2_type;
end record;

variable v : regtype;

v.reg1.f3 := “0011001100”;

Using ieee.std_logic_arith.all;

�Written by Synopsys, now freely
available

�Declares to additional types:
signed and unsigned

�Declares arithmetic and various
conversion operators: +, -, *, /, <,
>, =, <=, >=, /=, conv_integer

� Built-in, optimised versions
available in all simulators and
synthesis tools

� IEEE alternative: numeric_std

type unsigned is array (natural range
<>) of st_logic;

type signed is array (natural range
<>) of st_logic;

variable u1, u2, u3 : unsigned;
variable v1 : std_logic_vector;

u1 := u1 + (u2 * u3);

if (v1 >= v2) then ...

v1(0) := u1(conv_integer(u2));

Use of loops

�Used for iterative calculations

� Index variable implicitly
declared

� Typical use: iterative algorithms,
priority encoding, sub-bus
extraction, bus turning

variable v1 : std_logic_vector(0 to 7);
variable first_bit : natural;

-- find first bit set
for i in v1'range loop
 if v1(i) = '1' then
 first_bit := i; exit;
 end if;
end loop;

-- reverse bus
for in 0 to 7 loop
 v1(i) := v2(7-i);
end loop;

Multiplexing using integer conversion

�N to 1 multiplexing

�N to 2**N decoding

function genmux(s, v : std_logic_vector)
return std_logic is

variable res : std_logic_vector(v'length-1
downto 0);

variable i : integer;
begin
 res := v; -- needed to get correct index
 i := conv_integer(unsigned(s));
 return(res(i));
end;

function decode(v : std_logic_vector) return
std_logic_vector is

variable res :
 std_logic_vector((2**v'length)-1 downto 0);
variable i : natural;
begin
 res := (others => '0');
 i := conv_integer(unsigned(v));
 res(i) := '1';
 return(res);
end;

State machines

� Simple case-statement
implementation

�Maintains current state

� Both combinational and
registered output possible

architecture rtl of mymodule is
type state_type is (first, second, last);
type reg_type is record
 state : state_type;
 drive : std_logic;
end record;
signal r, rin : reg_type;
begin
 comb : process(...., r)
 begin
 case r.state is
 when first =>
 if cond0 then v.state := second; end if;
 when second =>
 if cond1 then v.state := first;
 elsif cond2 then v.state := last; end if;
 when others =>
 v.drive := '1'; v.state := first;
 end case;
 if reset = '1' then v.state := first; end if;
 modout.cdrive <= v.drive; -- combinational
 modout.rdrive <= r.drive; -- registered
 end process;
.

Conclusions

�The two-process design method provides a uniform
structure, and a natural division between algorithm
and state

� It improves

�Development time (coding, debug)

�Simulation and synthesis speed

�Readability

�Maintenance and re-use

